e the ending scale of the animation. Let x_i for $i \in \{1, 2, ..., n\}$ be the scale of each frame of animation. Let c be some constant we want to find, which is the ratio between consecutive frames. We want these values to have the following relationships. $\frac{x_{i+1}}{x_i} = c \quad \forall i \in \{1, ..., n-1\}$ constant ratio between consecutive frames

Let n be the number of frames in the animation. Let s be the starting scale and

$$x_1 = s$$
 first frame equals starting scale $x_n = e$ last frame equals ending scale.

Using these properties we get

$$\frac{x_2}{x_1} = \frac{x_2}{s} = c$$

$$x_2 = cs$$

$$\frac{x_3}{x_2} = c$$

$$x_3 = x_2c = c^2s$$

 $x_4 = x_3 c = c^3 s$

$$egin{array}{c} dots \ x_i \ dots \ \end{array}$$

Leading us to a formula for c.

 $c^{n-1} = \frac{e}{s}$

 $x_n = e = c^{n-1}s$

So that using $x_i = c^{i-1}s$ we get the equation for the scale of a frame

 $x_i = c^{i-1}s$

 $c = \left(\frac{e}{-}\right)^{\frac{1}{n-1}}$

 $x_i = s\left(\frac{e}{\epsilon}\right)^{\frac{i-1}{n-1}}$.